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AN APPROXIMATE METHOD TO COMPUTE THE NONLINEAR
NORMAL MODES AND BIFURCATION BY THE PRINCIPLE
OF LEAST ACTION

Chol Hui Pak* and Young Suk Yun*

(Received February 12, 1990)

An analytical procedure is presented to find approximately the nonlinear normal modes in conservative two-degree-of-freedom
system by using the principle of least action and by assuming that the modal curve is straight. The results are compared with those
of numerical experiments by utilizing the 4th order Runge-Kutta method, and it is found that there are good agreements between
them. By utilizing this procedure, it is demnostrated to compute the normal modes which are analytically extended from the
linearized modes and to find the generically or non-generically bifurcated modes which do not have any counterpart in the linear

theory.
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1. INTRODUCTION

We shall be interested in formulating an approximate
procedure to compute the normal modes in nonlinear conser-
vative systems having two degrees of freedom. As usual in
treating nonlinear vibrations in terms of normal mode, we
shall be concerned with motions of large amplitudes, the total
number of modes, and the bifuracation phenomenon.

The existence of normal modes has been extensively inves-
tigated by (Pak and Rosenberg, 1966). Yen (1974) demon-
strated that the normal modes occur in pairs. Johnson and
Rand (1979) showed that the normal modes generically occur
in pairs, and the non-generic case corresponds to the bifur-
cation.

The procedure to compute the normal modes and the
bifurcation in general nonlinear systems has not been report-
ed. For a special type of nonlinear systems called a symmet-
ric system, Anand (1972) computed the normal modes and the
bifurcation. The method is not applicable to other nonlinear
systems. The method is based on the assumption that the
modal curves of both similar and nonsimilar normal mode are
straight. The modal curves of nonsimilar modes computed by
the fourth order Runge-Kutta method are found to be approx-
imately straight (Pak and Park, 1988).

The purpose of this paper is to formulate a procedure to
approximately find the normal modes by utilizing the princi-
ple of least action under the assumption that the modal
curves are straight. The total number of normal modes,
which a system can possess, will be determined through this
procedure.

Examples are illustrated for systems having cubic non-
linearity. The locations of normal modes are calculated and
the global distribution of normal modes due to the increase of
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total energy of the system is also demonstrated. The results
obtained by present procedure are compared with computer
solutions.

2. PRELIMINARIES

2.1 Nonlinear Two-Degree-of-Freedom System

Let us consider the nonlinear conservative two degrees of
freedom system. The mathematical model of the system
consists of two concentrated masses m, and m., connected to
each other by means of massless coupled spring and to the
wall of each side by means of massless anchor spring, as
shown in Fig. 1.

The spring forces of this system are characterized by odd
order polynomial

Gi=k:id +a:4%i=1,2,3)
where 4 1is elongation of spring beyond its unstretched
length. In this paper, the above nonlinear, conservative, two
degrees of freedom system is called the system S. And the
system is called symmetric system if

m=m=m, ;=as=a, and ky=k;=k,

otherwise, it is called unsymmetric system.

R

G, G, G; ¥

Fig. 1 Non-linear two-degree-of-freedom system
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2.2 Definition of Normal Mode

The nonlinear normal mode of two-degree-of-freedom sys-
tem is defined as follows:

(1) x:(f)=x:(t+7) ;every mass does the same periodic
motion,

(2) x1(%o) =x2(t0) =0 ; every mass comes to the equilibrium
state simultaneously.

(3) #:(#:) = x2(#) =0; every mass has its extreme value at
the same time ¢,.

(4) x2=x2(x1) ; x. is a single-valued function of x, in the
closed domain V(xi, xz) = of the x;x.-plane.

These normal modes have very inportant meaning in the
view that the resonance occurs when the frequency of oscil-
latory force lies close to the natural frequencies and, in the
neighborhood of resonance, linear or not, is subjected to
oscillatory forces (Rosenberg, 1966).

The normal modes can be depited in configuration space as
shown in Fig. 2. The trajectory is called modal curve. If the
modal curve is straight, it is called the similar normal mode,
otherwise it is called nonsimilar one (Rosenberg, 1960, 1961).

2.3 Equations of Motion
The kinetic energy T and the potential energy V of the
system are in the form

T= o (i mid) M
V=W+"V; (2)

where

Vi Uhuxt+ k(= 1)+ koxd)

Vz:%{alxi‘%— 2o x2—x1) *+ aaxd) 3)

The equations of motion can be writteh in the form :

mi i+ (kv + ko) x1— kexa + a1 — @2 x2— 1) * =0
”'szfz"'(kz“}’ks)xz-kle+a'31'23+a’z(Xz—x1)3:0 4)

By means of the coordinate transformations
x=vmx
and
y=vmxz, (%)

the kinetic energy 7 and the potential energy V can be
rewritten as.

V=h V=h

(a) (b)

Fig. 2 Types of nonlinear normal mode ;
(a) similar normal mode, (b) nonsimilar normal mode

T=p(3+59
:_L k1 2 Yy X 2 k3 2
v 2{ ﬂhx +k2<; m2 \/;’;) + mzy } )

i{ Q4 ( y X )4 as 4}
Ut A Ty V) T
Then the equations of motion can be written

i =5V V) «
==Y 7o)

Equation (7) are mathematically completely equivalent to
equations (4) ; however their physical meanings are quite
different. Eqaution (7) may be regarded as the equations of
motion of mass points having unit mass that move in the
xy-plane.

When moving in the configuration space, the unit mass
point traces out a trajectory. Here we can derive the equation
of this trajectory. The Eq. (7) can be transformed into the
eqaution of trajectory of mass point in the configuration
space as follows (Rosenberg, 1966) :

2{h—V(x}y" + 14y (Vy—y Vi) =0 (8)

where 4 is the total energy of the system.

3. BASIC THEORY

The system considerd in this paper is a holonomic and
conservative system. Therefore, the periodic motions of the
system can be calculated by applying the Jacobi’s principle of
least action (Meirovitch, 1970 and Rosenberg, 1977). In
holonomic systems possessing an energy integral in which the
energy level is fixed in moving from a prescribed initial
configuration P, to a prescribed terminal configuration P,
the action integral

A= l’”m—“h* 7yds, 9)

initial and terminal configurations is stationary relative to all
other trajectories connecting the same end configurations,
that is,

SA=0, (10)

Thus the principle of least action gives necessary and
sufficient conditions for the action 4 to have a stationary
value for the actual motion of the system. Therefore, the
normal mode is found by obtaining the point P which make
the action A stationary when P,=0 and P,= P, When ds=
J/ %%+ yidt, the principle becomes Euler-Lagrange Eq. (7) and
when ds=/1+3"? dx, the principle results in the equation of
trajectory (8).

However, it is very difficult to solve the Eq.(8), since the Eq.
(8) is intrinsically nonlinear, even when the springs are linear,
and coefficient of y” can be zero due to the definition of
normal modes. But if the normal modes are similar, that is,
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Fig. 3 The coordinate transformation of nonlinear normal mode

y’ = P(constant),

the calculation becomes easy. The particular nonlinear sys-
tems (such as homogeneous and symmetric system) satisfies
the above relation. Since the general nonlinear systems do not
satisfy above relation, they have the nonsimilai normal
modes generally.

On the other hand, although the modal curves of the gen-
eral nonlinear systems are not straight, it is possible to obtain
the approximate nonlinear normal modes by assuming that
the modal curve is straight such as Anand’s asymmetric
modes(Anand, 1972),

Let’s compute the normal modes by using the principle of
least action, under the assumption that the modal curves of
nonlinear normal modes of the system are straight. Let us
transform the coordinates x(¢) and y(¢) :

x(t) =r(t)cosh
v(¢)=r(t)sinf (11)

as shown in Fig. 3 and let us define the parameter », which is
the value of »(¢) on the curve (V =#h) given by

Yo= 7”(_2‘)

where r is the period of the normal mode. Then the potential
energy of the system can be expressed as

V=Dr*+Cr* (12)
where
_ 1 k1+k2,‘ 2 k2+k3 20 _ 2k2 .
D= 2( . COS 6+ sin®*6@ T 31n6c050> (13)

C= i[( el BN 602 sin®fcos?d + a2+a33m 0)]
m my mz m

(14)

az( /ml ~——sin*fcosf + f--l— ————/m; sinfcos® 6)]

Since the system S is conservative, the relation

Young Suk Yun
V=h (15)

is satisfied at the fixed point on the energy curve. Therefore
from the Eqs.(12, 15) we can obtain the equation

Cro*+Dr,>—h=0. (16)
Two roots of Eq. (16) with respective to r,? are

D2 h )1/2

2 _ &~ = 4

Yo' = 2Ci<4C2+C a7
Now we define the action integral A from the origin 0 to

the rest point on the curve V —h=0:

A= ["va= v o)1+ rz(g—f)z dr. (18)

If we assume that the normal modes are straight, that is, Z‘z

=(, the Eq.(18) is reduced in the form
A= ["/2lh=V(r, 0.

The action integral A is a function of # only. Therefore,
using the principle of least action, we can find the follwing
relation

oA

50 —06=0. 19)

X a‘g ——must be equal to zero.

Therefore the similar normal modes are satisfied with the
relation

Since §¢ is an arbitrary value

dA/de=0. (20)

We can compute the nonlinear normal modes of the system
from the Eq.(20) as follows.

dA_ (7 _Dr+Crt _

dg f Zh-Di-ch 0 @D
where the primes are denoted the derivative with respect to 4.
The integration (Gradshteyn and Ryzhik, 1980) of Eq. (21)

leads to the equation
3 D’[2<4C2+ Y - {( B+ )"+ B rw]

(B 2 22 B 1) )k

C? C
~eB( B ) Ew]=0 (22)
where
D’=<kz%zk3 k‘+k2>sxnﬁcosﬁ+/—-~—-———
cos (sin*6 —26) (23)
C'= #cos‘é’%—( ”'?a:zz a;:laz)cos“f)smﬁ

+

. 1
——%___gin'6+3 -
v \/ m2® s az(¢m13¢mz 'mi vV ms® )

sin®fcos?g+ (-‘1’2’:—7‘“— %;h)cosﬁsinaﬁ (24)
1
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and K (%) and E(k)are the elliptic integrals given by

_ n/2 1
K _fo J/(1— Fsin’¢) %

E®=[""/U~F sin$) d¢ (25)
where the parameter £? is
D*  h\_ D
kz_(TC—”L &) ¢
- D? h\12
2(252*?)

We can obtain the angle 8 on the configuration space to
make the action integral stationary from the Eq(22). There-
fore, we can determine the nonlinear normal modes of the
form

y/x=p=tanb.
Now let us determine the nonlinear normal modes of the
system due to the variation of the total energy of the system.

Firstly, when the total energy of the system is very low, the
parameters of the (22) may be simply expressed in the form

() () (b

D
psgt KB =E(1+-55), BB =E{1—-Fx).

Then the Eq.(22) is reduced in the form

and

‘;‘g =0=6D*D' —9ChD' +ThDC’ (26)
Since we assumed that the total energy of the system S is
very low, all terms of the Eq(26) except 6 D>D’ are negligible
and D? is nonzero. Therefore we can obtain the following
fact:
When the total energy # is very low, the normal modes can

be obtained from the equation
D'=0 (27

which is the equation for determining the mode shapes of the
linear systems. Secondly, when the total energy of the system
is very high, the first term in the lefthand side of the Eq.(22)
can be neglected. This leads to the following relation :

If the total energy of the system is sufficiently high, the
nonlinear normal modes can be obtained from

C’'=0. (28)

The solutions satisfied with the Eq.(28) correspond to the
normal modes of the associated homogeneous system with
degree 4. It is denoted that the homogeneous system with
degree W +1 is a system which has the potential energy of
the form (Rosenberg, 1966)

W+l

n

< Xi %
{ 1.f=§x'1 +1 l Im;  JIm;

Finally, the nonlinear normal modes of the system S with
the general total energy 4 may be determined from the Eq
(22). In this case, numerical computation is effective to solve

Eq.(22).
4. EXAMPLES

4.1 Normal Modes of the System with Low Energy

Now we can find the normal modes from the Eq.(27) when
the total energy of the system is sufficiently low. The Eq.(27)
is rewritten in the form

D,:(kz-f-ka_kd-@_)
m;

sinfcosf
mz ¢

k2 s2n 20y —
+7m_1m?(8m 6 —cos*9) =0 (29)
Let P=tang, than Eq.(29) becomes

P’+7‘/:[1+:: 1+ ,’:‘)]P 1=0. (30)

The two roots of the Eq.(30) are

Pamgl - Zal b k)]
i)+

It is found that the two roots P, and P, are satisfied with the
orthogonal condition

+

] @1

P1 . Pzz“l (32)

Since the square roots in Eq(31) are always positive defi-
nite, P, and P, are always distinct real roots. Therefore we
can take the two normal modes y = P,x and y = P,x. From the
orthogonal condition in (32), it is found that one normal mode
exists in in-phase and the other mode in out-of-phase.

4.2 Normal Modes of the System with Very High
Energy
When the total energy of the system is very high, we can
determine the normal modes from the Eq(28). After simple
calculations, the Eq. (28) results in the equation

poa( Ty G M g)UM po g M2 _)ps

Qaz M2
_ma oy ma\Vmy o, ma
+(3 m @ m >; m P m 0 @3)

where P=tanf. The nonlinear normal modes can be deter-
mined by means of solving the Eq.(33).

The possible types of solution of the Eq(33) are as follows ;
(1) at least two distinct real roots, (2) a simple real root and
one triple root, (3) a double root and two distinct real roots,
(4) four distinct real roots.

As an example, consider the system which has the very
high energy and the coefficients given by

m=m:=m. a,=as=a, and arbitrary &, k., ks and a,.
Then the Eq. (33) becomes

Pi(glggeaa



82 Chol Hui Pak and Young Suk Yun

The Eq.(34) have two or four solutions given by

P[,zzil
_1 _£_> (_a__ ‘_ ]
Pa“~2[<2 ) V\a 2) 4

The real solution P; and P, can exist only when the coeffi-
cients have the relation(Ann, 1985)

at>4aas. (35)

Let all parameters of the system be positive for conve-
nience, than the solutions of the system correspond to the
type (1) when g<4a,, type(2) when o =4a,, and type (4) when
a >4a; in above type of solutions, respectively.

5. BIFURCATION OF NORMAL
MODES

5.1 The General Solutions of Equation(22)

In the linear systems, the number of normal modes is the
same as the degrees of freedom of the system and the mode
shapes are independent on the amplitude of the mode. But in
the nonlinear systems, the number of normal modes can
exceed that of degree-of-freedom and the mode shapes are
dependent on the amplitude or total energy of the system.

Thy system considered in this paper consists of the linear
and 4th order nonlinear potential energy. Therefore, when the
amplitude is very small, the motion of the system is nearly
same as that of the pure linear system. This has been a basic
idea that we have analyzed the most physical system with the
linearization process. But when the motion has the large
amplitude, the motion can not be analyzed by using linear
theory. As the amplitude increases, the effects of nonlinear
terms on the motion become significant. Finally, when the
amplitude of the motion is quite large, the motion approaches
the motion of the system with the pure 4th order non-linear
potential energy only.

Therefore the solutions of Eq(22) may be changed from the
solutions of linearized system as the total energy & of system
S increases from very low value. They may be developed
from original 2 solutions to 3 or 4 solutions. If the number of
roots of the equation C’=0 is 2, then the number of normal
modes does not change generally, but change their mode
shapes continuously as the total energy increases. However,
when the number of roots of the equation C’=0 is 3 or 4, it is
possible that the number of roots of Eq.(22) increases until 3
or 4 and there is obviously a certain energy ho which is an
energy of the system when the number of normal modes
changes from 2 to 3 or 4. In this case, the bifurcation phenom-
enon occurs.

5.2 The Bifurcation of Normal Modes of System S

The bifurcation can be classified as the generic bifurcation
and the non-generic bifurcation. When the normal modes are
bifurcated from the mode extended from a linearized mode, it
is called non-generic bifurcation. When the normal modes are
bifurcated from a new point, not from an early existing mode,
it is called generic bifurcation.

(1) No Bifurcation

When the associated homogeneous system of system S has
only two distinct real roots, the linearized modes of the
system S vary continuously their mode shapes and approach

Table 1 The comparison of the results of several methods to find
normal mode for the nonlinear system with the system
parameters: (= a:=1.6, @:=0.32, kb=£k=02, k.=
0.3, mi=m.= 1)

Energy Ru&ge:etﬁf)tétta II\J/Ir:tS}f:ctl Anand’s Method
4.2826 bifu:::(;tion bifu:::(;tion : igég;g
A
IR
6.8125 —34.1037 —34.1624 —33.6901
—55.8963 —55.8376 —56.3099
189 | “{ates | el | _eless
051 | Tesmw | _esaale | _esoeme
w2048 | Tegsly | “ewsors | _essear

the modes of homogeneous system with degree 4. This behav-
ior corresponds to the case that the condition (35) is not
satisfied.

(2) Non-Generic Bifurcation

When the associated homogeneous system of system S has
four distinct real roots, the normal modes of a particular
nonlinear system such as symmetric systems are non-
generically bifurcated from an early existing normal mode at
a certain energy ho.

As an example, consider the symmetric system which has
the following system parameters

w<

-
N
w4
e

>

_3.—

Fig. 4 The trajectories of the rest points of normal modes in the
case of non-generic bifurcation.
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m1:m2:1, /e1=k320.2, k2:0.3, 01203:1.6, 0'230.32

In this case, the numerical results of this method, Anand’s
method (1972), and numerical experiment by using the 4th
order Runge-Kutta method are compared in the Table 1
where the numbers are the angle of bifurcated modes, mea-
sured from the x-axis at the origin. The trajectories of the
rest points of normal modes and the modal curves of normal
mode obtained by numerical experiment due to the total
energy change are plotted in Fig. 4 and Fig 5, respectively.

h=3

h=4.4334

Fig. 5 The modal curves of normal modes (—) and the other trajectories (

ol

h=17274879

) obtained by the 4th order Runge-kutta

method in the nongeneric bifurcation case (m.=m.=1, £ =ks=0.2, k=03, e»=a:=1.6, @:=0.32)

From the above results, we can obtain the following facts:

Table 2 The comparison of the results obtained both by the
method proposed in this paper and by numerical method
making use of Runge-Kutta method for the system S
with the following system parameters : (o, = as=1.6, @, =

0.32, k=04, k=03, ks=0.2, mi=m.=1)

Energy Runge-Kutta Method Present Method
4.2826 46.0804 —~28.3774 46.0240 -~28.4241
6.8125 45.8680 —27.0516 45.8184 —27.0939

15.8790 45.5744 —25.0655 45.5415 ~25.0910
There is an energy Ao such that only a new mode occurs.

21.3326 45.4941 —24.5119 45.4684 —24.5352

~55.2347 —56.0526 —55.6031 —~55.6154

65.3051 45.2859 —22.9814 45.2695 —22.9965

—48.0447 —64.4143 —48.0416 —64.3860

5.05 —21.2957 45.0528 —21.3119

172714879 —:5.45;2) —68.3250 | —454496  —68.3196

Fig. 6

-3

J

NJr

wt
»
b

The trajectories of the rest points of normal modes in the

case of generic bifurcation
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h=4.2826

h=213326

h=1727.4879

Fig. 7 The modal curves of normal modes (——)and the other trajectories (------ ) obtained by the 4th order Runge-Kutta
method in the generic bifurcation case (mi=m.=1, k=04, £=03, £=0.2, a1=as=1.6, @.=0.32)

(a) The y=x mode and y=—x mode always exist, if the
total energy is high or not.

(b) As the energy increases, the new normal modes occur in
pairs from the early existing mode y=-—x, and symmet-
rically with respect to the out-of-phase mode y= -y, at the
energy in the neighborhood of 4.30, as shown in Table 1.

(c) The bifurcated modes change their mode shapes contin-
uously and approach the normal modes of the associated
homogeneous system with degree 4, as the total energy
increases.

(3) Generic Bifurcation

When the associated homogeneous system with degree 4 of
system S has four distinct real roots, the bifurcation of
normal modes occurs generally at a new point, not at the
mode extended from a linearized mode.

Consider a system, as an example, which has the following
parameter values ;

mi=m:=1, ki=0.4, k2=0.3, £3=0.2, ai=a:=1.6, dz:0.32

By the digital computer, the numerical results of present
method and the numerical experiment by using the 4th order
Runge-Kutta method are tabulated in the Table 2. The trajec-
tories of rest points and the modal curves of normal modes
obtained by the numerical experiment are shown in Fig. 6,
and Fig. 7, respectively. From these results, we can find the
following facts:

(a) Two linearized normal modes exist and vary continu-
ously their mode shapes as the energy # increases.

(b) There is an energy ho at which the normal modes are
bifurcated. In this moment, the number of normal modes
becomes 3.

(c) As the total energy increases from ho, the bifurcated
normal modes vary continuously their mode shapes and
approach the corresponding normal mode of homogneous
system with degree 4.

(d) Therefore the total number of normal mode becomes 4
when the total energy is sufficiently high.

6. CONCLUSION

An analytical procedure to calculate approximate non-
linear normal modes in nonlinear conservative two-degree-of-
freedom system is developed by utilizing the principle of least
action. By Applying this method to the nonlinear system with
cubic nonlinearity, we can obtain the following facts:

(1) It can be found that results of this approximate method
agree very well with those of the computer simulation in spite
of the assumption that the normal modes are straight.

(2) There are at least two nonlinear normal modes. The
maximum number of nonlinear normal modes can not exceed
the highest order of potential energy.

(3) As the total energy increases, the normal modes change
their mode shapes continuously from the linearized modes
and approach the corresponding normal mode of the associat-
ed homogeneous system with the highest degree.

(4) The bifurcation phenomena of normal mode are inves-
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tigated. As a result, it can be known that there are two types
of bifurcation, that is, generic bifurcation and nongeneric
bifurcation. This phenomena have a very important meaning
in the view that the resonance occurs in the neighborhood of
normal modes.
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